A New Approach to Modeling Multivariate Time Series on Multiple Temporal Scales
نویسندگان
چکیده
In certain situations, observations are collected on a multivariate time series at a certain temporal scale. However, there may also exist underlying time series behavior on a larger temporal scale that is of interest. Often times, identifying the behavior of the data over the course of the larger scale is the key objective. Because this large scale trend is not being directly observed, describing the trends of the data on this scale can be more difficult. To further complicate matters, the observed data on the smaller time scale may be unevenly spaced from one larger scale time point to the next. The existence of these multiple time scales means that it may be more appropriate to view the observations as coming from multiple, shorter multivariate time series occurring at each large scale time point as opposed to a single, long multivariate time series. Approaching the problem by examining the smaller scale time series separately, and then modeling the resulting estimates over the larger time scale, will provide an alternative to previous methods of dealing with similar situations while also producing additional information on the behavior of the data on the smaller observable time scale.
منابع مشابه
Multiscale analysis of short term heart beat interval, arterial blood pressure, and instantaneous lung volume time series
MOTIVATIONS Physiological systems are ruled by mechanisms operating across multiple temporal scales. A recently proposed approach, multiscale entropy analysis, measures the complexity at different time scales and has been successfully applied to long term electrocardiographic recordings. The purpose of this work is to show the applicability of this methodology, rooted on statistical physics ide...
متن کاملContext-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network
Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...
متن کاملA textual transform of multivariate time-series for prognostics
Prognostics or early detection of incipient faults is an important industrial challenge for condition-based and preventive maintenance. Physics-based approaches to modeling fault progression are infeasible due to multiple interacting components, uncontrolled environmental factors and observability constraints. Moreover, such approaches to prognostics do not generalize to new domains. Consequent...
متن کاملMissing data imputation in multivariable time series data
Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کامل